Pixel level optical-transfer-function design based on the surface-wave-interferometry aperture

نویسندگان

  • Guoan Zheng
  • Yingmin Wang
  • Changhuei Yang
چکیده

The design of optical transfer function (OTF) is of significant importance for optical information processing in various imaging and vision systems. Typically, OTF design relies on sophisticated bulk optical arrangement in the light path of the optical systems. In this letter, we demonstrate a surface-wave-interferometry aperture (SWIA) that can be directly incorporated onto optical sensors to accomplish OTF design on the pixel level. The whole aperture design is based on the bull's eye structure. It composes of a central hole (diameter of 300 nm) and periodic groove (period of 560 nm) on a 340 nm thick gold layer. We show, with both simulation and experiment, that different types of optical transfer functions (notch, highpass and lowpass filter) can be achieved by manipulating the interference between the direct transmission of the central hole and the surface wave (SW) component induced from the periodic groove. Pixel level OTF design provides a low-cost, ultra robust, highly compact method for numerous applications such as optofluidic microscopy, wavefront detection, darkfield imaging, and computational photography.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Study of subsidence of Abarkooh plain of Yazd using the Synthetic Aperture Radar Interferometry method

Abstract The population growth, the development of cities, industry, agriculture, and improper use of resources especially non-renewable resources have led human beings to face the danger of running out of resources. In some cases, in addition to the above, irreversible environmental and geological hazards have occurred due to the overdrawn of resources. Over extraction of groundwater resourc...

متن کامل

Comparison of Local and Non-Local Methods in Covariance Matrix Estimation by Using Multi-baseline SAR Interferometry and Height Extraction for Principal Components with Maximum Likelihood Approach

By today, the technology of synthetic aperture radar (SAR) interferometry (InSAR) has been largely exploited in digital elevation model (DEM) generation and deformation mapping. Conventional InSAR technique exploits two SAR images acquired from slightly different angles, in which the information of elevation and deformation can be captured through processing of the phase difference of the image...

متن کامل

Wave packet interferometry for short-time electronic energy transfer: Multidimensional optical spectroscopy in the time domain

We develop a wave packet interferometry description of multidimensional ultrafast electronic spectroscopy for energy-transfer systems. After deriving a general perturbation-theory-based expression for the interference signal quadrilinear in the electric field amplitude of four phase-locked pulses, we analyze its form in terms of the underlying energy-transfer wave packet dynamics in a simplifie...

متن کامل

Robust Object-based Multi-baseline InSAR

Deformation monitoring by multi-baseline repeat-pass synthetic aperture radar (SAR) interferometry is so far the only imaging-based method to assess millimeter-level deformation over large areas from space. Past research mostly focused on the optimal deformation parameters retrieval on a pixel-basis. Only until recently, the first demonstration of object-based urban infrastructures monitoring b...

متن کامل

طراحی و ساخت لایه‌های نازک اپتیکی با نمایه ضخامت متغیر برای تولید آینه‌های VRM

  The design method and fabrication of mirrors with variable reflectivity are presented. To fabricate such a mirror a fixed mask with a circular aperture is used. The circular aperture is considered as an extended source with cosx(θ)as its diffusion distribution function and is the parameter for the distribution function of the particles through the aperture. The thickness profile of deposited ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 18  شماره 

صفحات  -

تاریخ انتشار 2010